38 research outputs found

    Metabolism of polysaccharides in dynamic middle lamellae during cotton fibre development

    Get PDF
    Main conclusion: Evidence is presented that cotton fibre adhesion and middle lamella formation are preceded by cutin dilution and accompanied by rhamnogalacturonan-I metabolism. Cotton fibres are single cell structures that early in development adhere to one another via the cotton fibre middle lamella (CFML) to form a tissue-like structure. The CFML is disassembled around the time of initial secondary wall deposition, leading to fibre detachment. Observations of CFML in the light microscope have suggested that the development of the middle lamella is accompanied by substantial cell-wall metabolism, but it has remained an open question as to which processes mediate adherence and which lead to detachment. The mechanism of adherence and detachment were investigated here using glyco-microarrays probed with monoclonal antibodies, transcript profiling, and observations of fibre auto-digestion. The results suggest that adherence is brought about by cutin dilution, while the presence of relevant enzyme activities and the dynamics of rhamnogalacturonan-I side-chain accumulation and disappearance suggest that both attachment and detachment are accompanied by rhamnogalacturonan-I metabolism

    Heteromannan and heteroxylan cell wall polysaccharides display different dynamics during the elongation and secondary cell wall deposition phases of cotton fiber cell development

    Get PDF
    The roles of non-cellulosic polysaccharides in cotton fiber development are poorly understood. Combining glycan microarrays and in situ analyses with monoclonal antibodies, polysaccharide linkage analyses and transcript profiling the occurrence of heteromannan and heteroxylan polysaccharides and related genes in developing and mature cotton (Gossypium spp.) fibers have been determined. Comparative analyses on cotton fibers at selected days post anthesis indicate different temporal and spatial regulation of heteromannan and heteroxylan during fiber development. The LM21 heteromannan epitope was more abundant during the fiber elongation phase and localized mainly in the primary cell wall. On the contrary, the AX1 heteroxylan epitope occurred at the transition phase and during secondary cell wall deposition and localized in both the primary and the secondary cell walls of the cotton fiber. These developmental dynamics were supported by transcript profiling of biosynthetic genes. Whereas our data suggest a role for heteromannan in fiber elongation, heteroxylan is likely to be involved in the regulation of cellulose deposition of secondary cell walls. In addition, the relative abundance of these epitopes during fiber development varied between cotton lines with contrasting fiber characteristics from four species (G. hirsutum, G. barbadense, G. arboreum, G. herbaceum), suggesting that these non-cellulosic polysaccharides may be involved in determining final fiber quality and suitability for industrial processing

    Transcriptional Analysis of a Photorhabdus sp. Variant Reveals Transcriptional Control of Phenotypic Variation and Multifactorial Pathogenicity in Insects▿

    No full text
    Photorhabdus luminescens lives in a mutualistic association with entomopathogenic nematodes and is pathogenic for insects. Variants of Photorhabdus frequently arise irreversibly and are studied because they have altered phenotypic traits that are potentially important for the host interaction. VAR* is a colonial and phenotypic variant displaying delayed pathogenicity when directly injected into the insect, Spodoptera littoralis. In this study, we evaluated the role of transcriptomic modulation in determining the phenotypic variation and delayed pathogenicity of VAR* with respect to the corresponding wild-type form, TT01α. A P. luminescens microarray identified 148 genes as differentially transcribed between VAR* and TT01α. The net regulator status of VAR* was found to be significantly modified. We also observed in VAR* a decrease in the transcription of genes supporting certain phenotypic traits, such as pigmentation, crystalline inclusion, antibiosis, and protease and lipase activities. Three genes encoding insecticidal toxins (pit and pirB) or putative insecticidal toxins (xnp2) were less transcribed in VAR* than in the TT01α. The overexpression of these genes was not sufficient to restore the virulence of VAR* to the levels of ΤΤ01α, which suggests that the lower virulence of VAR* does not result from impaired toxemia in insects. Three loci involved in oxidative stress responses (sodA, katE, and the hca operon) were found to be downregulated in VAR*. This is consistent with the greater sensitivity of VAR* to H2O2 and may account for the impaired bacteremia in the hemolymph of S. littoralis larvae observed with VAR*. In conclusion, we demonstrate here that some phenotypic traits of VAR* are regulated transcriptionally and highlight the multifactorial nature of pathogenicity in insects

    Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality

    Full text link
    A global gene expression profiling study at different stages of fiber development was undertaken on two cotton species cultivated for fiber, Gossypium hirsutum (L.) and G. barbadense (L.). A large proportion of the genome was expressed during both fiber elongation and subsequent secondary cell wall thickening. There was a major shift in abundance of transcripts for gene regulation, cell organization and metabolism between fiber elongation and fiber thickening that was fundamentally similar in both species. Each stage had its own distinctive features represented by specific metabolic and regulatory genes, a number of which have been noted previously. Many of the genes expressed in the fibers were of a similar type and developmental expression to those seen in other fiber-producing plants, indicating a conservation of mechanisms of cell elongation and wall thickening across diverse plant genera. Secondary metabolism and pectin synthesis and modification genes were amongst the most statistically significant differentially expressed categories between the two species during fiber elongation. The gene profiles of the fiber thickening stage, however, were almost identical between the two species, suggesting that their different final fiber quality properties may be established at earlier stages of fiber development. Expression levels of repre-sentative phenylpropanoid and pectin modification genes showed high correlations with specific fiber properties in an inter-specific cotton recombinant inbred line (RIL) population, supporting a role in determining fiber quality

    Whole-Genome Comparison between Photorhabdus Strains To Identify Genomic Regions Involved in the Specificity of Nematode Interaction

    No full text
    The bacterium Photorhabdus establishes a highly specific association with Heterorhabditis, its nematode host. Photorhabdus strains associated with Heterorhabditis bacteriophora or Heterorhabditis megidis were compared using a Photorhabdus DNA microarray. We describe 31 regions belonging to the Photorhabdus flexible gene pool. Distribution analysis of regions among the Photorhabdus genus identified loci possibly involved in nematode specificity

    Precursor and metamorphic conditions effects on Raman spectra of poorly ordered carbonaceous matter in chondrites and coals

    No full text
    International audienceGeothermometers based on Raman spectrometry of carbonaceous matter and covering a wide range of temperatures (100–650 °C) have been developed over recent years. While Raman data have been largely interpreted in terms of temperature, they are also the fingerprint of certain metamorphic conditions, especially in the low temperature range relevant to poorly ordered carbonaceous matter. This study investigates the Raman spectra of two series of chondritic carbonaceous matter and coal samples formed from different precursors and under different metamorphic conditions. The Raman spectra of Polyaromatic Carbonaceous Matter (PCM) from 42 chondrites and 27 coal samples, measured with visible (514 nm) and ultra-violet (244 nm) excitation wavelengths, are analyzed. The Raman spectra of low rank coals and chondrites of petrologic types 1 and 2, which contain the more disordered PCM, reflect the distinct carbon structures of their precursors. The 514 nm Raman spectra of high rank coals and chondrites of petrologic type 3 exhibit continuous and systematic spectral differences reflecting different carbon structures present during the metamorphism event. They result from differences in the chemical structures of the precursors concerning for instance the reticulation of polyaromatic units or an abundance of ether functional groups, or possibly from a lack of carbonization processes to efficiently expel oxygen heteroatoms, due to weak lithostatic pressure and confinement. These results suggest that the use of low temperature carbon thermometers should be restricted to a given geological context. At the same time, the sensitivity of Raman spectra to precursors and certain metamorphic conditions could be used to obtain information other than temperature. The analysis also provides evidence of the accretion of relatively homogeneous PCM precursors among ordinary CO and CV carbonaceous chondrite parent bodies, given that the 514 nm Raman spectra of PCM efficiently trace the metamorphism grades. Looking closer, however, the 514 nm Raman data are more scattered in chondrites than in coals and the maturity tracers are less sensitive and miscorrelate with the atomic H/C ratio, suggesting slight compositional and structural differences among the PCM precursors accreted
    corecore